Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats’ gastric tissue followed hydroxyapatite nanoparticles’ oral uptake



Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB.


Toxicol Res (Camb). 2020 Aug 3;9(4):493-508. doi: 10.1093/toxres/tfaa054. 2020 Jul.


Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats’ stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2′-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters. CI – © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email:

Keywords: .

Link/DOI: 10.1093/toxres/tfaa054