Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands



Hamad MTMH.


Chemosphere. 2020 Dec;260:127551. doi: 10.1016/j.chemosphere.2020.127551. Epub 2020 Jul 7.


Semi-arid countries continue to face water scarcity, especially with the current global climatic changes. This scarcity has continuously increased over the last five decades in countries like Egypt, Syria, Libya and Jordan, where the agriculture sector consumes more than 85% of the country’s water resources. The problem of water scarcity in Egypt is further challenged by high levels of urbanization, increasing industrial uses, and the high cost of advanced treatment processes. These challenges lead to the utilization of untreated or poorly treated wastewater for irrigation of agricultural crop fields. Thus, the current study proposes the use of an eco-friendly technology consisting of a constructed wetland planted with Typha latifolia and Cyperus papyrus supported with zeolite substrate for water purification, to curb this challenge. The results showed that, the removal efficiency of COD, BOD, TSS, and ammonia were 68.5%, 71%, 70%, and 82.3%, respectively by Typha latifolia bed. On the other hand, the removal efficiency of COD, BOD, TSS and ammonia were 85.5%, 86.2%, 83.9% and 92.3% respectively by Cyperus papyrus bed. As a result, bacteriological parameters were reduced to 99.9%, and complete removal of Salmonella sp was achieved during three days by Cyperus papyrus. Box-Behnken design was utilized to optimize independent factors, including contact time (24-72h) and initial concentration of metals (15-45 mg L(-1)) and their responses. The removal efficiency of Cu and Zn were 72% and 84%, respectively of the optimum reaction time (72 h), with 16 plant stems and an initial metal concentration of 15 mg L(-1). CI – Copyright © 2020 Elsevier Ltd. All rights reserved.

Keywords: .

Link/DOI: 10.1016/j.chemosphere.2020.127551