Evolutionary dynamics of foot-and-mouth disease virus O/ME-SA/Ind2001 lineage

.

.

Subramaniam S, Mohapatra JK, Sharma GK, Biswal JK, Ranjan R, Rout M, Das B, Dash BB, Sanyal A, Pattnaik B.

.

Vet Microbiol. 2015 Aug 5;178(3-4):181-9. doi: 10.1016/j.vetmic.2015.05.015. Epub 2015 May 27.

Abstract

Foot-and-mouth disease (FMD) virus serotype O Ind2001 lineage within the Middle East-South Asia topotype is the major cause of recent FMD incidences in India. A sub-lineage of Ind2001 caused severe outbreaks in the southern region of the country during 2013 and also reported for the first time from Libya. In this study, we conducted a detailed evolutionary analysis of Ind2001 lineage. Phylogenetic analysis of Ind2001 lineage based on maximum likelihood method revealed two major splits and three sub-lineages. The mean nucleotide substitution rate for this lineage was calculated to be 6.338×10(-3)substitutions/site/year (s/s/y), which is similar to those of PanAsian sub-lineages. Evolutionary time scale analysis indicated that the Ind2001 lineage might have originated in 1989. The sub-lineage Ind2001d that caused 2013 outbreaks seems to be relatively more divergent genetically from other Ind2001 sub-lineages. Seven codons in the VP1 region of Ind2001 were found to be under positive selection. Four out of 24 recent Ind2001 strains tested in 2D-MNT had antigenic relationship value of <0.3 with the serotype O vaccine strain indicating intra-epidemic antigenic diversity. Amino acid substitutions found in these minor variants with reference to antigenic diversity have been discussed. The dominance of antigenically homologous strains indicates absence of vaccine immunity in the majority of the affected hosts. Taken together, the evolution of Ind2001 lineage deviates from the strict molecular clock and a typical lineage evolutionary dynamics characterized by periodic emergence and re-emergence of Ind2001 and PanAsia lineage have been observed in respect of serotype O. CI - Copyright © 2015 Elsevier B.V. All rights reserved. Keywords: . Link/DOI: 10.1016/j.vetmic.2015.05.015