Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study



Alawi OA, Abdelrazek AH, Aldlemy MS, Ahmed W, Hussein OA, Ghafel ST, Khedher KM, Scholz M, Yaseen ZM.


Nanomaterials (Basel). 2021 Jul 31;11(8):1979. doi: 10.3390/nano11081979.


Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k-ε turbulence model for the flow range 1 × 10(4) ≤ Re ≥ 24 × 10(3). A wide range of parameters like different nanomaterials (Al(2)O(3), CuO, SiO(2) and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.5, 1 and 2) and different aspect ratios (AR) (1.5, 2, 2.5 and 3) were examined. Also, the effect of inner cylinder rotation was discussed. An experiment was conducted out using a field-emission scanning electron microscope (FE-SEM) to characterize metallic oxides in spherical morphologies. Nano-platelet particles showed the best enhancements in heat transfer properties, followed by nano-cylinders, nano-bricks, nano-blades, and nano-spheres. The maximum heat transfer enhancement was found in SiO(2), followed by ZnO, CuO, and Al(2)O(3), in that order. Meanwhile, the effect of the HFR parameter was insignificant. At Re = 24,000, the inner wall rotation enhanced the heat transfer about 47.94%, 43.03%, 42.06% and 39.79% for SiO(2), ZnO, CuO and Al(2)O(3), respectively. Moreover, the AR of 2.5 presented the higher heat transfer improvement followed by 3, 2, and 1.5.

Keywords: .

Link/DOI: 10.3390/nano11081979