Missing and unerupted teeth in osteogenesis imperfecta



Taqi D, Moussa H, Schwinghamer T, Vieira AR, Dagdeviren D, Retrouvey JM, Rauch F, Tamimi F; Members of the BBDC.


Bone. 2021 Sep;150:116011. doi: 10.1016/j.bone.2021.116011. Epub 2021 May 18.


Top-down population modelling has gained applied prominence in public health, planning, and sustainability applications at the global scale. These top-down population modelling methods often rely on remote-sensing (RS) derived representation of the built-environment and settlements as key predictive covariates. While these RS-derived data, which are global in extent, have become more advanced and more available, gaps in spatial and temporal coverage remain. These gaps have prompted the interpolation of the built-environment and settlements, but the utility of such interpolated data in further population modelling applications has garnered little research. Thus, our objective was to determine the utility of modelled built-settlement extents in a top-down population modelling application. Here we take modelled global built-settlement extents between 2000 and 2012, created using a spatio-temporal disaggregation of observed settlement growth. We then demonstrate the applied utility of such annually modelled settlement data within the application of annually modelling population, using random forest informed dasymetric disaggregations, across 172 countries and a 13-year period. We demonstrate that the modelled built-settlement data are consistently the 2nd most important covariate in predicting population density, behind annual lights at night, across the globe and across the study period. Further, we demonstrate that this modelled built-settlement data often provides more information than current annually available RS-derived data and last observed built-settlement extents. CI – © 2020 The Author(s).

Keywords: .

Link/DOI: 10.1016/j.bone.2021.116011